Intuition & Algorithm
Question 25 is a more general question of this one.
Suppose there are three pairs $p_0$, $p_1$ and $p_2$. We need to swap nodes in $p_1$, after that, we should reconnect it to it’s adjacent pairs by:
For the first pair, $p_0(1)=null$ so we don’t need the first equation and and for the last one, $p_2(0)=null$;
Code
- Recursion
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
class Solution {
public ListNode swapPairs(ListNode head) {
return dp(head);
}
private ListNode dp(ListNode head){
if(head == null || head.next == null)
return head;
ListNode next = head.next.next;
head.next.next = head;
head = head.next;
head.next.next = dp(next);
return head;
}
}
2.Iteration1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
class Solution {
public ListNode swapPairs(ListNode head) {
if(head == null || head.next == null)
return head;
ListNode gH = head;
ListNode gT = head.next;
head = gT;
while(gH != null && gT != null){
ListNode tmp = gT.next;
gT.next = gH;
if(tmp != null && tmp.next != null){
gH.next = tmp.next;
gH = tmp; gT = tmp.next;
}
else{
gH.next = tmp;
gH = tmp; gT = null;
}
}
return head;
}
}
Complexity
Time Complexity: $O(n)$ becasue we iterate over the entire list
Space Complexity: For the recursion solution, $O(\lceil n/2 \rceil)$ space is necessary to store all the pairs. We cost constant space $O(1)$ for the iteration method.